
Advances in Science, Technology and Engineering Systems Journal
Vol. 2, No. 3, 1711-1726 (2017)

www.astesj.com
Special Issue on Recent Advances in Engineering Systems

ASTES Journal
ISSN: 2415-6698

Pluggable Controllers and Nano-Patterns in Java with Lola
Yossi Gil 1, Ori Marcovitch1, Matteo Orrú*,1, Ori Roth1

1Computer Science Dept., CS Taub Building, The Technion—IIT, Haifa 3200003, Israel

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 11 June, 2017
Accepted: 21 July, 2017
Online: 09 September, 2017

Pluggable controllers are a different way to design control constructors
such as if, while, do, switch, and operators such as short circuit con-
junction (&&) and the “?.” operator of the Swift programming language.
Adoption of pluggable controllers enables the final user to modify and ex-
tend the control flow constructs (if, while, etc.) of an underlying pro-
gramming language, the same way they can do if they implement functions
such as printf and class String in a standard library.

In modular, pluggable controller based language design, beside core con-
trol constructors, there are others, defined in standard libraries, with the
purpose of augmenting and enriching the language. These pluggable con-
trollers are extensible and replaceable. Being less intertwined in the main
language, control constructor libraries can evolve independently from it,
and their releases do not mandate new language releases.

We illustrate the implementation of pluggable controllers using Lola, a
powerful language-independent preprocessor and macro language. We
demonstrate the introduction of new pluggable controllers with two case
studies. The implementation of a Java stenography based on prevalent
Java idioms, called “nano-patterns” or nanos, and the introduction in
Java of new code constructs inspired by the Mathematica language’s com-
mands.

Keywords:
Programming Languages
Preprocessors
Macro Languages
Pluggable Controllers
Language Augmentation
Nano-Patterns

1 Introduction
A recent publication [1] described a preliminary new per-
spective of viewing keywords such as if and while as li-
brary functions such as printf: standardized, but user ex-
tendable and replaceable. In this work, we expand on this
vision, demonstrating the extension of Java with control
keywords for two applications: a stenography for a concrete
nano-patterns language whose prevalence in Java was pre-
viously demonstrated [2] and the implementation of Math-
ematica-like control structure in Java.

1.1 Control Constructors
Control Constructors are defined as those elements of a pro-
gramming language that make it possible to assemble com-
mands. In textbooks [3–5] as well as in classic works on
programming languages [6–9], is reported that there are es-
sentially three kinds of control constructors:

Sequential Iterative Conditional

A further distinction can be made between atomic and
compound commands, where the latter are formed by prim-

itive and other smaller compound commands. In Pas-
cal, for example, atomic commands are the empty com-
mand, the assignment, and the procedure call. On the
other hand, Begin. . . end is the sequential constructor,
whereas While. . .do. . . is an iterative constructor, and,
If. . .then. . . is a conditional constructor.

In real languages, there is no sharp separation between
expressions and commands. Many operators that form ex-
pressions can act as control constructors. This is the case of
standard short circuits operators such as “&&” and “||”, and
standard conditional operators such as “· ? · : ·”, Other
examples worth mentioning are represented by:

1. The “,” (comma) operator of C (the sequential
comma operator of C).

2. The “||” operator, which “provides a default value”,
the Python variant of a short circuit.

3. The “??” operator (null coalescing) of C#.

4. The “?.” operator (fluency on null) of Swift.

5. The “noexcept” operator of C++, recently intro-
duced, which guards against exceptions.

*Computer Science Dept. The Technion—IIT, Taub Building, Haifa 3200003, matteo.orru@cs.technion.ac.il

www.astesj.com 1711
https://dx.doi.org/10.25046/aj0203211

http://www.astesj.com
http://www.astesj.com
mailto:matteo.orru@cs.technion.ac.il

These operators can be expressed in terms of sequen-
tial, iterative, and conditional control constructors (hence-
forth, “SIC”). Structured programming [7] is defined by the
notion of SIC, meaning that SIC are sufficient to impose
structure on the unstructured. In fact, any program that has
goto instructions in it can automatically be converted into
an equivalent one that uses only SIC [10].

Concrete languages sometimes deviate from the tradi-
tional concept of SIC. A typical example is the while com-
mand of Python that has its peculiar else. Another exam-
ple is represented by the different ways switch statements
deal with fall-through cases, which is different in some lan-
guages. Variations and diversifications also appear in the
semantics of

try. . .catch. . .finally

blocks. Language engineers, developers and practitioners
are generally interested in using new language features that
are likely to enhance their productivity, efficiency and re-
duce their errors. In general, the creativity of language en-
gineers slows down after a languages’ first release. Even
small changes to a (successful) language definition might
have unpredictable, potentially negative effects in the least
expected places [11, p.497–508].

For the above reason, the long time taken before intro-
ducing the switching on strings feature in Java (see Fig. 1)
is understandable. It took around twenty years from pro-
posal1 to implementation2—probably because of worries
about its implications for engineers.

public static void main(String[] args) {
for (String arg: args)
if (arg.equals("-c") || arg.equals("--bytes"))
. . .
else if (arg.equals("-m") || arg.equals("--chars"))
. . .
else if (arg.equals("-w") || arg.equals("--words"))
. . .
else if (arg.equals("-l") || arg.equals("--lines"))
. . .
else if (arg.equals("--help"))
. . .
else if (arg.equals("--version"))
. . .
. . .

}

Figure 1: Java code with multiple comparisons of the same
string variable with a sequence of string literals.

The drawback of the prudence characteristic of lan-
guage architects, when it comes to introducing new fea-
tures, is that it might negatively affect software systems.
For example, consider that the late introduction of gener-
ics in Java forced developers to use the unsafe Vector as a
substitute.

1.2 A Modular, Plugin-Oriented Approach
This paper raises the idea that the design of programming
languages, specifically in respect to their control construc-
tors’ design, may follow a different, modular plug-in ori-

ented approach. This proposal suggests that a program-
ming language should have a number of core control con-
structors, whereas additional and more sophisticated control
constructors, which we called pluggable controllers, can be
defined in standard libraries of controllers, similar to what
happens with functions such as printf in C or classes such
as String in Java.

This approach promotes the decoupling between the
controllers and the language architecture, leaving to both
sides the freedom to evolve independently. This solution
has advantages in different scenarios. The final user would
be able to modify and extend the control flow constructs
such as if, while, etc. of an underlying programming lan-
guage. Language designers would be able to experiment
new features before changing the language architecture.
The proposed approach could also foster more sound dis-
cussions on the introduction of new features inside the users
community.

The problem of the modularization of languages com-
ponents is he main problem of Modular Language Develop-
ment, a research branch that investigates how to componen-
tize language design. Several solutions to the problem of
componetization are available—see, for example, Cazzola
and Vacchi [12] which adopt a solution based on Traits [13].

Another approach exploits the concept of extensible
language, which presents some challenges such as that of
adapting the parser according to language evolution [14] .

1.3 Lola
The imposition of a new code constructors on an underly-
ing language can be done using Lola [15], the Language
Of Language Amendment, which is a modern, language-
independent, preprocessor and macro language, orientated
to language extension. Lola makes it possible to augment
and amend syntactical constructs of any host language.

Lola works like a filter [16] (see also [17, Sect. 3.1])
that converts an input stream comprising tokens of differ-
ent kinds into an output stream. Lola allows designers to
extend and enrich existing languages with new construc-
tors without affecting languages architecture, since plugged
controllers can be defined in Lola configuration files. In
addition, with Lola, experiments on new language features
can be conducted in controlled environments by scholars,
designers and practitioners.

1.4 Nano-Patterns
A nano-pattern is a recurring solution adopted by develop-
ers, for a common task that involves control constructors.
The fact that they are recurring solutions means that they are
used often by developers. Another possible interpretation
is that they are workarounds that developers found to over-
come languages restrictions. In a previous study, it has been
shown that there exist a number of prevalent nano-patterns.
With the term “prevalent” we mean that they recur often in
software systems. These solutions are potential candidates
for inclusion as new language features—which can be done
painlessly with a pluggable controllers approach.

1http://bugs.java.com/bugdatabase/view bug.do?bug id=1223179
2http://docs.oracle.com/javase/7/docs/technotes/guides/language/strings-switch.html

www.astesj.com 1712

Y. Gil et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1711-1726 (2017)

http://bugs.java.com/bugdatabase/view_bug.do?bug_id=1223179
http://docs.oracle.com/javase/7/docs/technotes/guides/language/strings-switch.html
http://www.astesj.com

1.5 Contribution
The present paper makes several contributions:

• We propose a novel, modular approach to the design
of control constructors, the use of pluggable con-
trollers. This approach makes it easier to add new
(experimental) features to an existing programming
language.

• We introduce Lola, a new preprocessor and macro
language, oriented to language augmentation. We il-
lustrate its syntax, work flow and present some mean-
ingful examples.

• We further discuss the concept of nano-patterns
(from now on nanos), introduced in previous works
[1] as recurring solutions adopted by developers, to
common tasks that involve control constructors.

• We demonstrate how to impose pluggable controllers
on top of Java using Lola. Specifically, we present
two case studies that show a specific usage of con-
trol constructors: a new stenograpy for Java nano-
patterns and the Java implementation of common
Mathematica commands.

Outline: The paper is organized as follows. Sect. 2 illus-
trates some basic concepts to establish a common vocab-
ulary. Sect. 3 presents Lola, the Language Of Language
Amendment. Sect. 4 describes the two case studies above
mentioned. Sect. 5 discusses some practical applications
and outlines some promising avenues for researchers and
practitioners. Sect. 6 reports on related work. Sect. 7 con-
cludes and suggests future directions for this research.

2 Background

2.1 Pluggable Controllers
The following is an intuitive definition of pluggable con-
trollers:

Pluggable Controllers

Controllers should be just like functions and classes
found in a library: standardized, yet extendable and
replaceable.

The term controller in this definition encompasses both
classical control constructs such as while and if · · · else,
and operators such as “??” that control the order of evalua-
tion of their arguments. According to the pluggable con-
trollers approach, a language has only essential, built-in
SIC. A standard library of varieties of controllers comple-
ments the basic SIC: For example, built-in might be the fol-
lowing:

{c1; · · ·cn} (2.1)

or

while (e) c (2.2)

and

if (e) c1 else c2, (2.3)

while a standard library contains for, do and switch. In
any case, the library is not sealed. On the contrary, devel-
opers may add their own control constructors, e.g., adding

while (e) c1 else c2 (2.4)

to Java. With pluggable controllers, extending switch to
strings becomes possible using by library evolution rather
than a new language version. Further, no disturbance to the
language’s core should occur by adding a “?.” operator to
it. Pluggable controllers join the trend of parameterization
of programming languages’ elements.

Historically, standard procedures such as Write were
hardwired in many programming languages, and the same
happens today, even in contemporary languages such as
AWK. Pascal was the first language to introduce pre-defined
procedures such as Writeln, functions such as Sin, literals
such as true, and types such as Integer. These prede-
fined types, functions, literals or procedures can be over-
ridden by developers when necessary. Likewise, in C, any-
one can produce their own version of printf from the stan-
dard <stdio.h> library. In Java, the atomic types, e.g., int,
double and boolean, are built-in, whereas their Go equiv-
alent are pre-defined.

2.2 Nano-Patterns
The definition of nano-patterns (or simply nanos) was intro-
duced at the end of the seminal work on Micro-Patterns [18]
and lately used by authors such as Singer et al. [19] and
Batarseh [20], who provided their definitions. In this paper
we use the following definition:

Nano-Patterns (intuitive definition)

A nano-pattern (or nano) is a pattern of (typically
less than a dozen) control constructs, which recurs
frequently, serving common or similar purpose, yet
cannot be abstracted easily by a function.

Our working hypothesis was that ordinary control con-
structors are designed with a prudent view of their usabil-
ity. At the same time, nanos leverage a unique way of us-
ing control constructors that emerges from their function,
heretofore not necessarily discerned by language designers.
Moreover, the different ways in which control constructors
may be used are not static but evolve over time. They are
continually being developed and perfected in many specific
domains.

A case in point regards the nanos of iterations that were
not included in the design of traditional languages. Con-
sider the design of a pluggable controller that captures the
following nano3 in Java code:

while (e) c1 else c2 (2.5)
3This is actually a control constructor in Python.

www.astesj.com 1713

Y. Gil et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1711-1726 (2017)

http://www.astesj.com

Introducing this pluggable controller in Java might be
worth the effort depending on the frequency of the patterns
using if and the auxiliary variables required to capture its
behavior. The same applies to other constructs that capture
recurring tasks such as “apply an and/or/sum” and other as-
sociative operations on Iterables” or “iterate, zipper style,
on two lists” A high frequency of reuse may suggest that de-
velopers would gain some benefits by the introduction of a
pluggable controller. In order to avoid dangerous side ef-
fects on the language architecture, the proposed solution is
to place controllers in a library rather than in the language
core.

In a previous work, a catalog of 38 nanos was identified
through a process that includes an initial subjective scrutiny
and successive further evaluations using the objective preva-
lence threshold test against a baseline corpus [2]. All the
found nanos are:

• Traceable, using an appropriate parser (our nano
tracer).

• Purposeful, because they are aimed at performing a
specific programming task.

• Prevalent, according to the definition that follows.

The Prevalence of a nano in a given project of a corpus
is equivalent to the number of times that it recurs in that spe-
cific project. A nano is “prevalent” if its prevalence value
is higher than a given prevalence threshold. The prevalence
threshold ρ is defined as the fraction of projects of a cor-
pus, for which nano prevalence is higher than a given reuse
threshold. Here we are considering ρ = 0.5, as in refer-
ence [2]. The reuse threshold rth of a project p is computed
similarly to the way done for the popular h-index [21] of
a researcher: A project p has a method reuse index r if
it has r-methods that are reused r times or more. Thus a
nano meets the prevalence threshold criterion if its preva-
lence is higher than the reuse threshold in, at least, 50% of
the projects in a corpus C.

The prevalence threshold criterion is robust, objective
and filters out irrelevant or domain specific candidate nanos.
The reuse index is more robust than other statistics such as
mean and median [22]. In fact, reuse is characterized by
a long tail distribution as it happens in many software en-
gineering contexts [23–26]. Being based on the h-index,
also the r-index presents the same advantages, apart from
the mentioned robustness, such as the fact that it captures
the “core” of projects’ methods, namely those that are more
reused. The insensitiveness towards small values (low reuse
of methods) allows to filter out those values that are related
to project idiosyncratic features [27]. At the same time,
the r-index “inherits” from the h-index some of its draw-
backs. When it is used to compare different projects, it is
needed to take into account that there are intrinsic differ-
ences between projects, such as their age. The reuse thresh-
old tends to mitigate some of these drawbacks. Moreover,
when comparing the r-indexes of two projects, the only
thing that matters is that it refers to the “core” methods.
Two projects with the same r-index are treated as equiva-
lent, even if there are marked differences in terms of total

number of reuse or maximum number of reuse. From a dif-
ferent perspective, this can be considered an advantage be-
cause it means that the r-index implicitly ignores outliers.

Table 1 lists 19 out of the 38 nanos in the original cat-
alog [2]. These nanos are those that involve SICs. This
new catalog has two categories: “Expressions and Com-
mand Elaborators” and “Operation and Operators on Mul-
titudes”. Nanos included in the first category are used
to manage small errors and exceptional values, substitut-
ing missing values with default ones, guarding against null
parameters or missing pre-conditions in method execution
and handling unusual control flow. The second category
covers simple operations on multitudes (i.e., arrays, lists,
sets, etc.) including but not limited to: retrieving subsets
of values, applying commands, computing cardinality of a
multitude, etc. The second column provides the names of
the nanos, whereas the third column presents their Intent,
which is a description of their purpose, written in pseudo
code. It is worth noting that often a nanos’ name is ob-
tained by juxtaposing the corresponding pseudo code key-
words. For example, the following code describes the intent
of the nano evaluateUnlessDefaultsTo:

[Evaluate] e unless b [default e′], (2.6)

which captures the following Java snippet of code like:

pos > 0 ? pos - 1 : 0 (2.7)

The pseudo code adopts the following conven-
tions: C–command, e–expression, p–predicate, M–Multitude
(i.e., an array, stream, list, set, collection, etc.), b–Boolean
expression, i–identifier, T–Type, and, X–eXception type.
The fourth column reports the prevalence. Its values are
related to the first, baseline, corpus, called Gil-Lalouche
Corpus (from now on GL Corpus). It is composed of 26
popular projects selected from the GitHub’s TrendingWiki-
BookJavaIdiom repositories 4 augmented by the GitHub
Java Corpus 5 list due to Allamanis and Sutton [28]. See
Table 2 for a list of the projects. This corpus was previously
used in other independent research [29].

4https://github.com/trending?l=javasince=monthly
5http://groups.inf.ed.ac.uk/cup/javaGithub/

www.astesj.com 1714

Y. Gil et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1711-1726 (2017)

https://github.com/trending?l=javasince=monthly
http://groups.inf.ed.ac.uk/cup/javaGithub/
http://www.astesj.com

Table 1: Language of Java Nano-Patterns
Name Intenta Prevalenceb

Expression and Command Elaborators

1 executeUnless
[Execute] C unless b
[Execute] C when b 100%

2 whenHoldsOn

When p(·)
of x,y,z: C1
of w: C2
otherwise C3

100%

3 defaultsTo
e1 default e2
e1 ?? e2

81%

4 questionQuestion
e1 default e2 else e3
e1 ?? e2 : e3

96%

5 safeNavigation
e?. f
e?.m() 50%

6
evaluateUnless-
DefaultsTo

v = [Evaluate] e unless b [default e′] 92%

7 safeCast T?(e) 96%

8 throwOnFalse
Throw X when b
b ?! X 100%

9 throwOnNull
Throw X when e nulls
e !! X 81%

10 notNullRequired
Return default when a nulls
T f (safe F1, . . . ,safe Fn){. . .}; 88%

11 notNullAssumed
Return default when e nulls
e , null || return default;

92%

12 holdsOrReturn
Return default when b
b || return default;

100%

13 ignoringExceptions {. . . } ignoring X1, . . . ,Xn; 58%
14 letInNext let v← e in C; 100%

Name Intenta Prevalenceb

Operations and Operators on Multitudes

15 forFromTo

For i = 0, . . . ,n− 1 [do] . . .
for (i: e1.. e2) C; // i = e1, . . . ,e2 − 1
for (i: .. e) C; // i = 0,1, . . . ,e− 1
for (i: e..) C; // i = e, . . . (∞-loop)
for (..) C; //∞-loop (no loop index)

73%

16 aggregate
Aggregate M [st p(·)] with A(·, ·)
M.filter(. . .).reduce(. . .) 58%

17 selectBy

Select i ∈ M s.t. p(i)
{x ∈ M|p(x)}
M/p(·)
M.filter(. . .).collect(. . .)

73%

18 forEach

For i ∈ M [s.t. p(i)] [do] . . .
for (..) p(·):C
M.forEach(. . .)
M.filter(. . .).forEach(. . .)

96%

19 firstSuchThat
First · M/p(·)
M.filter(. . .).findFirst() 50%

a e.g., pseudo-code, Java 8 streams, suggestion for extending plain
Java syntax, etc.

b Prevalence score in the baseline corpus

Table 2: Baseline corpus of 26 OSS Java projects: Identi-
fication, reproducibility information and work volume indi-
cators.

Project First Version Last Version Last Hash #Days #Authors

Atmosphere1 10-04-30 14-04-28 557e1044 1,459 62
CraftBukkit 11-01-01 14-04-23 62ca8158 1,208 156
Cucumber-jvm 11-06-27 14-07-22 fd764318 1,120 93
Docx4j 12-05-12 14-07-04 8edaddfa 783 19
Elasticsearch 11-10-31 14-06-20 812972ab 963 129
Essentials 11-03-19 14-04-27 229ff9f0 1,134 67
Guava1 11-04-15 14-02-25 6fdaf506 1,047 12
Guice 07-12-19 14-07-01 76be88e8 2,386 17
Hadoop-common 11-08-25 14-08-21 0c648ba0 1,092 69
Hazelcast 09-07-21 14-07-05 3c4bc794 1,809 65
Hbase 12-05-26 14-01-30 c67682c8 613 25
Hector 10-12-05 14-05-28 f2fc542c 1,270 95
Hibernate-orm 09-07-07 14-07-02 b0a2ae9d 1,821 150
Jclouds 09-04-28 14-04-25 f1a0370b 1,823 100
Jna 11-06-22 14-07-07 a5942aaf 1,110 46
Junit1 07-12-07 14-05-03 56a03468 2,338 91
K-9 08-10-28 14-05-04 95f33c38 2,014 81
Lombok 09-10-14 14-07-01 3c4f6841 1,721 22
Mongo-java-driver 09-01-08 14-06-16 5565c46e 1,984 75
Netty 11-12-28 14-01-28 3061b154 762 72
Openmrs-core 10-08-16 14-06-18 05292d98 1,401 119
RxJava 13-01-23 14-04-25 12723ef0 456 47
Spring-framework 10-10-25 14-01-28 c5f908b1 1,190 53
Titan 13-01-04 14-04-17 55de01a3 468 17
Voldemort 01-01-01 14-04-28 fb3203f3 4,865 56
Wildfly 10-06-08 14-04-22 5a29c860 1,413 194

Total: 26 projects 38,250 1,932

The complete study regarded a total of 78 Java projects,
split into three parts: 26 belong GL Corpus, 26 are the most
starred GitHub Java projects and the remaining 26 are the
most starred Android GitHub projects at the time we col-
lected the projects6. The GL corpus was used as a training
corpus. At first the initial catalog of candidates was col-
lected, through a process of pattern harvesting, by analyz-
ing a set of six Java projects (partially overlapping with the
GL corpus). Next, the prevalence of each nanos belonging
the initial catalog of candidates, was computed on the GL
corpus. Following this, the nanos whose prevalence is lower
than the prevalence threshold, were discarded. Finally, the

prevalence was computed for the projects of the remaining
corpora (testing corpus). Information regarding the repro-
ducibility appears in Table 2.

3 Lola

Lola combines computational expressiveness with minimal
syntax. This is made possible through the adoption of
Python as an underlying computation model. Lola also in-
cludes high level pattern matching, independence from the
host language and a declarative nature (achieved with direc-
tives from C). Lola input is composed of host tokens–those
of the host language, Python snippets of code, Lola key-
words and user defined keywords. In order to distinguish
the host-tokens from the Lola keyword (such as ##Find and
##replace), the former are defined in an XML configura-
tion file.

The output stream is the result of the application of “di-
rectives” found in the input stream to subsequent input. The
directives correspond to macros whose invocation is trig-
gered by a pattern matching engine that relies on regular
expressions over tokens. This makes it possible to augment
the host language syntax without having to meddle with the
language semantics. Macros are expanded to equivalent
constructs written in the host language syntax. They can
also be expanded in the augmented syntax, with the purpose
of being further expanded by other Lola macros to code in
the host language such as Java or C.

There are two kinds of directives: Generators and
Lexies. Generators are constructs that use Generating Ex-
pressions (GEs) to return sequences of host-tokens inside
the output stream. We can distinguish between two kinds
of generators: atomic or constructor. Examples of atomic
generators are ##, ##Include and ##Import. Constructors
are, for example, ##If, ##Unless and ##Case. When the

6February 2017

www.astesj.com 1715

Y. Gil et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1711-1726 (2017)

http://www.astesj.com

preprocessor encounters generators, it pauses the process of
copying host tokens from the input to the output stream and
inserts into the stream the result of the generating expres-
sion.

Lexies are Lola’s basic elements of computation and
contain the instructions that determine the outcome of the
Lola execution. In practice, they describe the augmenta-
tion to the host language. The augmentation is expressed
in terms of extended Regular Expressions (REs). When the
preprocessor finds a lexi in the source code, it tries to match
the RE reported in ##Find directives against the subsequent
tokens. Lexies are structured in sections, with a Declarative
Header, an Action Section, and a Declarative Footer. Sec-
tions may occur in any order. Directives such as ##Find and
##description belong to the Declarative Header, which
contains the RE that can be matched by the subsequent host
language tokens. Section such as ##replace and ##run be-
long to the Action Section, which contains the elaborators
for the code matching REs in previous sections. The Declar-
ative Footer usually contains directives such as ##example
and ##log, used for documentation purposes.

GEs and REs are both Compound Objects of Lola. GEs
are used as conditional commands (i.e., ##If, ##Unless,
etc.) or to iterate over the elements of a collection (usually
a list) such as in the case of ##ForEach. REs appears in
a lexi after the ##Find directive. When the input stream
RE matches, Lola creates a Python object that contains in-
formation about the location in the input. This informa-
tion is accessible by the other directive such as ##run and
##replace in other sections of the lexi. For example, it is
possible to access the self and str attributes (and many
others).

In sum, the Lola workflow is the following: Lola tries to
match the pattern reported in the ##Find directive. When
it succeeds, this triggers, for example, the ##replace di-
rective reported in Fig. 4, which replaces the found pattern
with code written in the host language. Patterns are ex-
tended regular expressions (REs). Whenever a snippet of
code matches with a RE , Lola creates a Python reifying
object, which can be manipulated. The computations per-
formed by a lexi include code replacement, but a lexi can
also invoke Python code.

Lola’s syntax strives to adhere to English sentence struc-
ture. Furthermore, it uses capitalization conventions to
make code easier to read: @CamelCase convention is used
for constructors and @camelCase is for elaborators. The
use of abbreviations or acronyms, including those of famil-
iar terms such as EOF it is strongly discouraged. Lola can
be used also for computing code metrics, enforcing code
standards, and adding a C preprocessor functionality to any
programming language. Nevertheless, its main purpose is
to allow developers to introduce new keywords and opera-
tors, and in general, new syntax to the host language.

4 Case Studies
In the present Section we demonstrate the use of Lola to
implement custom pluggable controllers with two specific

goals:

1. To implement a Java Stenography.

2. To define new commands taken from a different pro-
gramming language, Mathematica.

4.1 Stenography for Java Nano-Patterns
Stenography7 is defined as “an abbreviated symbolic writ-
ing method that increases speed and brevity of writing as
compared to longhand, a more common method of writing a
language” 8. The idea behind a stenography for Java nano-
patterns, comes from the experience common to any devel-
oper. Everyone has written a lot of code is familiar with the
feeling of repetitively writing small fragments of code. Al-
though frequent fragments may take only few seconds to be
written, if their frequency is high it may lead to a non-trivial
effort for the developers, on the long run. With this mind, it
is easy to understand that a stenography for nano-patterns is
likely to increase programmers’ productivity, by shortening
the syntactic structure of several code constructs.

Nano-patterns are common Java idioms that have been
proven to be recurring, namely prevalent, in a meaningful
dataset of Java software systems. Since they refers to work-
ing code, their Lola implementation preserve the semantics
in the host language. Table 1 provides the proposed stenog-
raphy in the Intent column. Due to space constraints, we are
going to illustrate two significant examples, one for each
group. Specifically, for the first group we are illustrating
notNullRequired nano whereas for the second group we are
describing forEach.

Each snippet of code has a similar structure. The top
part present a lexi, which reports the directives written in
Lola language. These directives determine the substitutions
of the tokens in the input stream. In the bottom part is re-
ported the code governed by Lola. We can distinguish three
kinds of keywords: host specific (Java keywords in this
case), Lola’s built-in (beginning with a double hash char-
acter ##). These are reserved keywords. Finally we have
user defined keywords, defined in Lola directives that, by
convention, begin with a single hash character #. For exam-
ple in Fig. 4 we have:

• #safe that is a new defined keyword.

• ##Find, ##NoneOrMore, ##Either, ##or,
##separator, ##Any, are Lola’s keywords.

• ##ArgumentDeclaration, ##Identifier,
##SafeArgumentDeclarationList, ##Type are not
primitive Lola’s keywords, but are defined in a sep-
arate ##Find directives contained in the std.lola
library.

• int and return are Java keywords.

The first is an ##Import directive:

##Import “std.lola” (4.1)

which is used to access to predefined directives.
In fact, ##ArgumentDeclaration, ##Identifier,

7Also known as shorthand writing.
8https://en.wikipedia.org/wiki/Shorthand

www.astesj.com 1716

Y. Gil et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1711-1726 (2017)

https://en.wikipedia.org/wiki/Shorthand
http://www.astesj.com

##SafeArgumentDeclarationList, ##Type are defined
in the std.lola library.

The fundamental directive is ##Find: It allows Lola to
find sequences of tokens (patterns) in the input stream that
match a specific extended regular expression (RE). For ex-
ample in Fig. 5 the RE is the following:

f or (##Any(loop) | ##Expression(f ilter)) ##Any(statements)

(4.2)

When a match is found Lola may trigger a number of
actions, such as the substitution or deletion of elements, the
recording of elements for later use, etc. The most com-
mon directive is the substitution according to the instruction
found in the ##replace directive (after the homonym re-
served keyword). On occasion, it is possible to run Python
script of code inside the ##run directive. The mentioned
Python code must be surrounded by curly braces.

Whenever a pattern matches, Lola creates a Python
reifying object which can be manipulated in the ##run sec-
tion. The results of the matches are stored in variables
whose identifiers correspond to the parameters of the di-
rectives. In case of multiple values, they are stored in lists.

For example, eq. (4.2) shows the use of an atomic
RE , ##Any. ##Any is used twice one with loop parame-
ter and the second with the statements parameter. loop
and statement are the names of the variables in the reify-
ing object. ##Expression is a not a build keyword but is
defined in the std.lola library.

4.1.1 The notNullRequired Nano

The notNullRequired is used to guard against null expres-
sions. In case the expression is null the method returns.
The lexi appears at the beginning of the code reported in
Fig. 4. It introduces a user defined keyword called safe.
The #safe modifier is applied to the parameters x and s of
the method declaration at the bottom. It is used to check if
the ##safe parameters are null. In this case the method
returns.

The first ##Find directive defines the first pattern,
which consists in a #safe modifier followed by the clas-
sic Java syntax for methods parameters. This is de-
fined in the ##ArgumentDeclaration directive in the
imported std.lola library. Each match is stored in
SafeArgumentDeclaration.

In the second ##Find, RE matches if it finds:

1. one or more standard (unsafe) parameters declara-
tion;

2. one or more #safe parameters declaration;

3. both the first and the second case interleaved
(##Either);

4. none of them (##NoneOrMore).

In the third ##Find, the RE matches the method
declaration. Finally the ##replace directive perform
the substitution. It is worth to note the use of
Python code, and specifically of the method join of
the String class, inside a list comprehension expres-
sion, to generate the output. This script have access to

##SafeArgumentDeclaration variable, to the element l of
the ##SafeArgumentDeclarationList ls. Each l has two
fields (name and type, each of them has a name field).

int f(Integer x, String s) {
Objects.requireNonNull(x);
Objects.requireNonNull(s);
return x + Integer.parse(s);

}

Figure 2: Java output of the notNullRequired nano

The Java implementation is reported in Fig. 2. It
exploits the java.util.Objects class which includes 9
static methods to work on objects. For each method ar-
gument x with #safe modifier, adds a call to the static
method Objects.requireNonNull(x) at the start of the
method’s body. This specific implementation throws
NullPointerException when one of #safe arguments is
null. However, we can think of other actions that can be
done (i.e., printing a warning, returning null, etc.).

4.1.2 The forEach Nano

forEach implements a filtered ForEach loop. It is used to
apply a command by iterating over a multitude or a subset
of a multitude (as it happens in SQL). The lexi reported in
Fig. 5 have a single ##Find directive, that matches a pattern
that includes an enhanced for loop and an expression sepa-
rated by a pipe character "|". The loop contains statements
that are applied just if the expression after "|" is true.

for (final Integer i : nums()) {
if (!(i%2==0))
continue;
f(i);

}

Figure 3: Java output of the forEach nano

Fig. 3 shows the Java code in output. The loop iterates
over an Iterable returned by the nums() method, skipping
the elements that do not satisfy the predicate p - in this case,
if they are not even numbers. p can be a lambda expression.

4.2 Mathematica’s Commands in Java

In the present section we present, as case study, the intro-
duction of new commands in Java using Lola. We are par-
ticularly interested is on some commands of Mathematica,
a popular language for technical computing. Mathematica
presents several control structures that differs from those
available in Java.

Table 3 reports the selection of the Mathematica’s com-
mands that we implemented. The second column reports
the command in the Mathematica syntax, that is also the
stenographic convention we adopted in the implementation.
Descriptions are taken from the Mathematica documenta-
tion. Due to space constraints we are illustrating only one
of the most meaningful commands, represented by the Do
command.

www.astesj.com 1717

Y. Gil et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1711-1726 (2017)

http://www.astesj.com

##Import "std.lola"
##Find(SafeArgumentDeclaration) #safe ##ArgumentDeclaration
##Find(SafeArgumentDeclarationList) ##NoneOrMore ##Either ##ArgumentDeclaration(dec)
##or ##SafeArgumentDeclaration(dec) ##separator,
##Find ##Type(type) ##Identifier(name) (##SafeArgumentDeclarationList(ls)) {##Any(statements)}
##replace ##(type) ##(name) (##(",".join([l.type.name + "␣" + l.name.name for l in ls.decs]))) {

##("".join(["Objects.requireNonNull(" + l.name.name + ");" for l in ls.decs]))##(statements)}

int f(#safe Integer x, #safe String s) {
return x + Integer.parse(s);

}

Figure 4: Java code governed by Lola for the notNullRequired nano

##Import "std.lola"
##Find for (##Any(loop) | ##Expression(filter)) { ##Any(statements) }
##replace for (##(loop)) {if (!(##(filter))) continue; ##(statements)}

for (final Integer i : nums() | i % 2 == 0) {
f(i);

}

Figure 5: Java code governed by Lola for the forEach nano

4.3 Loops: the Do Command
The Do9 has multiple options and can be used in different
ways. An example is reported in eq. (4.3): It iterates n
times expr.

Do[expr, n] (4.3)

Fig. 6 reports the lexi and the Java code governed by
Lola. It is possible to see the use of the ##run directive: the
doName variable is elaborated in the successive ##replace
directive as well as the times parameter of ##Literal and
the ee parameter of ##Any in the ##Find directive.

##Find do[##Any(e),{##Literal(times)}];
##run {

if ’x’ not in locals():
x=0
else:
x=x+1
doName=’ i’+str(x)

}
##replace for(int ##(doName)=0;##(doName)<##(times);++##(doName)) {
##(e);

}

public void foo(){
do[f(),{5}];
do[g(),{15}];

}

Figure 6: Lexi for Do

Fig. 7 reports the output of the Lola engine. f() and
g() are iterated n times (having n different values for each
for loop).

public void foo(){
for(int i0=0; i0<5; ++ i0) {f();}
for(int i1=0; i1<15;++ i1) {g();}

}

Figure 7: Java output for Do

5 Discussion
Several opportunities may derive from the adoption of a
pluggable, modular approach for programming language
design. With every likelihood, some innovations in lan-
guages design might have been introduced faster and earlier.
Also discussions around the new features would have been
more sound, because supported by more realistic evidence
of their feasibility and impact on languages architecture. In
this work we are specifically interested in the design of con-
trol constructors. Lola is certainly helpful in this regards. Its
preprocessing and macro language capabilities allow the fi-
nal user to augment a language with new controllers (in a
pluggable way) without affecting the language architecture.

With every likelihood using Lola we could have had
switch on strings by augmenting the language with a li-
brary without changing the language version. It would
have been the same for the C#’s ?. operator10. Other im-
provements made possible by Lola is it multi-way, non-fall
through branching conditional operator. And this would
have been made using standard libraries of varieties, with-
out changing language’s core.

Some language extensions, such as the ?. operator, are
expected to be widely adopted by any kind of user, mean-
ing that everyone is expected to eventually use them. Other
application may be related to specific tasks. Programmers
writing tests for an experts system may wish to define their
own control constructors to support declarative tests such as
#Tweaking "int␣i=3;i+=2;" #gives "int␣i=5;";

Developers trained in the functional programming
school, may find useful to use also in Java list expressions
such as:
#sum #apply () -> 1./(*) #to primes();

Another possible application is represented by the de-
velopment of libraries to deal with common tasks such as
logging or interacting with SQL . As an example, con-
sider Mockito, a popular “mocking framework for unit tests

9https://reference.wolfram.com/language/tutorial/LoopsAndControlStructures.html
10https://msdn.microsoft.com/en-us/library/dn986595.aspx

www.astesj.com 1718

Y. Gil et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1711-1726 (2017)

https://reference.wolfram.com/language/tutorial/LoopsAndControlStructures.html
https://msdn.microsoft.com/en-us/library/dn986595.aspx
http://www.astesj.com

Table 3: Mathematica commands in Java
Name Commanda Descriptionb

1 If If[condition,t, f]
If[condition,t, f ,u]

Gives t if condition evaluates to True, and f if it evaluates to False
Gives u if condition evaluates to neither True nor False

2 Do

Do[expr,n]
Do[expr,{i,imax}]

Do[expr,{i,imin,imax}]
Do[expr,{i,imin,imax,di}]
Do[expr,{i,{i1,i2,. . . }}]
Do[expr,{i,imin,imax},{ j, jmin, jmax},. . .]

Evaluates expr n times
Evaluates expr with the variable i successively taking on the values
1 Through imax (in steps of 1)
Starts with i = imin
Uses steps di
Uses the successive values i1, i2, . . .
Evaluates expr looping over different values of j etc., for each i

3 Nest Nest[f ,expr,n] Gives an expression with f applied n times to expr

4 NestWhile NestWhile[f ,expr,test] Starts with expr, then repeatedly applies f until applying test to the
result no longer yields True

5 Which Which[test1,value1,test2,value2,. . .] Evaluates each of the testi in turn, returning the value of the valuei
corresponding to the first one that yields True

aMathematica instruction.
bAs reported in Mathematica’s documentation.

in Java”. Using a future (not the current) release of Lola,
Mockito’s developers would be able to rewrite the follow-
ing snippet of code11:

Iterator i=mock(Iterator.class);
when(i.next()).thenReturn("Hello").thenReturn("World");
String result=i.next()+"␣"+i.next();
assertEquals("Hello␣World", result);

in the following way:
Iterator i=mock(Iterator.class);
#mock Iterator
#upon next() #return "Hello," #then "World!"
#affirm next() + "␣" + next() #is "Hello,␣World\n";

which is arguably more explanatory. With the present
version of Lola it is not possible to implement the latest
code, but it will be possible in the next release, currently
under development.

In the Lola version, the following

#inlining. . .#to. . .

is a user defined control constructor, which can be seen as a
syntactic sugar of the following instruction:

inliningInto("int␣i=3;i+=2;", "int␣i=5;");

In another form, using an appropriate fluent API library
we have:

inlining("int␣i=3;i+=2;").to("int␣i=5;");

Lola can be seen as a special case of syntactic sugaring,
task that is well performed by tools such as SugarJ [30],
Racket [31] or Occam through Camlp4 [32]. Since Lola’s
focus is specifically on language extension it is possible to
envision a rather coherent ensemble of applications of the
idea of language extension, such as a definition of a DSL
like fluent API. Lola can certainly be used during the DSLs
development. At the same time, Lola itself can be seen as a
DSL which uses Macro Processing as implementation ap-
proach [33].

Many other applications of Lola are possible in the field
of testing, logging, design-by-contract, etc. (see, as an
example, the recent work on Seamless Requirement from
Naumchev and Meyer [34]) . Our current empirical study
of nano-patterns in Java [2] indicates that nano-patterns oc-
cur in two thirds of methods, about half of the statements,

third of conditional statements and 90% of all iterative state-
ments, in the Gil-Lalouche corpus [29].

The basic scenario for Lola is that of language exten-
sion, amendment or augmentation. Users involved are de-
velopers, language engineers or advanced users interested
in extending a General Purpose (GPL) or Domain Specific
(DSL) host language. Apart from learning Lola’s syntax
(which, in the authors’ opinion, should not have a steep
learning curve for an average developer) the users need to
know Python. This can be seen as a drawback of Lola.
However, this issue is common to other similar solutions
such as SugarJ [30], which presumes the knowledge of SDF
[35] and Stratego [36]. On the other end, the use of Python
might represent an opportunity, since its popularity [37,38],
exposes Lola to a wider developers’ community.

If language specification changes, this might in princi-
ple alter the behavior of the stenographic form of a nano-
pattern imposed by Lola. In general, it is developers’ re-
sponsibility to adjust Lola libraries according to the spec-
ification changes, so to guarantee upward compatibility.
Nano-patterns have been proven to be popular solutions to
small programming tasks, as results from their prevalence
values. If we look at the baseline corpus described in Ta-
ble 2, which represents a subset of the entire analyzed cor-
pus, we find that the average work volume is, on average,
327.46 days (median 199 days), with a time range that spans
from 2011 to 2014. During this time the Java Language
Specification changed from version 3 (JLS3, 2004) [39] to
4 (JLS4, 2011) [40]. The JSL4 specification introduced im-
portant features, such as binary literals, diamond operators
for generic type inference, etc.

Dyer et al., in their large scale investigation of Java
projects hosted on SourceForge 12, found that new features
are used by developers before the official release of the
specification, taking advantage of the beta/pre-releases [41].
More likely than not, also the developers who worked on the
projects included in the baseline corpus, adopted new lan-
guage features during the development process. This means
that the analysis is already, implicitly, taking into account
the upward compatibility. In fact, the most prevalent nano-
patterns emerged from source code that is likely to include
both old and new features. This might suggest that either

11https://gojko.net/2009/10/23/mockito-in-six-easy-examples/
12https://sourceforge.net/

www.astesj.com 1719

Y. Gil et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1711-1726 (2017)

https://gojko.net/2009/10/23/mockito-in-six-easy-examples/
https://sourceforge.net/
http://www.astesj.com

nano-patterns capture language constructs that were not in-
terested by changes in the specification, or those that were
affected by the mentioned changes, if present, did not pass
our prevalence test.

Moreover, Dyer et al. found also that the majority of
newly introduced language features are rarely used by de-
velopers [41], with few meaningful exception. According
to Qiu et al. [42], who conducted a large-scale study on the
use of Java constructs, the distribution of syntactic rules us-
age is Zipfian, with 20% of the most-used rules accounting
for 85% of all rule usage, whereas the 65% of the least-
used rules is used less than 5%. The same authors show that
the adoption of new rules varies over time and it is contex-
tual [42]. These findings might suggest that the problem of
upward compatibility is not so significant in practice, being
in fact mitigated by the tendency of developers to be, to a
certain extent, recalcitrant to employ newly introduced fea-
tures. Moreover, the decision to adopt an h-index variation
as a reuse measure, is aimed at balancing the effect of such
kind of statistical distribution, as discussed in Sect. 2.2.

6 Related Work

6.1 Lola

6.1.1 Embedded languages

Lola can be seen as an embedded language. The embedded
text is distinguished by the host text because it is preceded
by a hash character and ends with an un-escaped end-of-line
character. The most trivial example involves comments. To
a certain extent, also comments and string literals can be
seen as embedded language. In Java, for example, com-
ments begin and end with specific character sequences, /*
and */, respectively for the beginning and end of the com-
ment. The same applies to JavaDoc comments. Inside a
comment, text is treated differently than in regular code.

The most relevant example is represented by PHP,
where commands are embedded in HTML [43] pages.
Other meaningful examples are ASP [44] and JSP [45],
which adopted the same idea. More recently we have a
number examples of DSL languages which extend or en-
hance a host GPL language. They usually target specific
problem, like interaction with databases as in the case of
J% [46].

Lola is not an embedded language on its own. It actually
embeds both the host language and Python. The host lan-
guage is seen as a stream that can be manipulated, whereas
Python snippets are used to compute the code processing.

6.1.2 Preprocessors

There are several preprocessors available. The C prepro-
cessor [47], introduced in the early stages of its host lan-
guage, C, is arguably the most famous text preprocessor,
often identified by its acronym, CPP [48, 49]. It is al-
most entirely independent from the host programming lan-
guage [50], to the point that it can be viewed as an indepen-
dent programming language. As a programming language,
the C preprocessor is limited. For example, it cannot per-
form iterations (loops) and it does not have conditionals on
macro parameters and it does not allow recursive structure.
It also has a minimal “library”.

Other popular preprocessors are PL/1 and M4 [51]. The
PL/1 preprocessor is similar to the C preprocessor in some
respects (i.e., built-in types, directives, etc.) whereas M4 is
a general language-independent preprocessor, which facil-
itates more complete processing (it allows recursive calls
and has conditional constructs) if compared to the other
above mentioned [52] preprocessors. M5 [53] is an im-
proved version of M4.

Many preprocessors use a general purpose program-
ming language, such as Python (e.g., Cog13, jinja14,
django15, PYM [54], pyexpander16, pypreprocessor17, Pre-
processor in Python18 and Cheetah19). Others use Perl (e.g.,
PerlPP20).

6.1.3 Macro Languages

There are several problems with macro systems. They
might capture names that are already used (Hygenic Macros
solve this problem [55]). Macro systems do not usually dif-
ferentiate between lexical elements of the hosting language
such as expressions, identifiers, constants, etc. One pre-
processor that differs in this aspect is the Marco preproces-
sor [56], which has a way to reduce the coupling between
the host language to the macro system.

6.2 Nano-Patterns
The first appearance of the term nano-patterns was in
the conclusion of a work by Gil and Maman micro-
patterns [57]. Singer et al. [19], starting from a work by
Høst and Østvold [58], collected a language of 17 nano-
patterns, which the authors demonstrated to be prevalent
(at an 80% level), traceable, and, purposeful. The names of
their found nano-patterns underscore their purposefulness.
Singer et al.’s catalog is at the base of studies on the re-
lationship between nano-patterns and defectiveness [59] or
vulnerabilities [60].

Differently from our catalog, Singer et al.’s catalog re-
gards properties of methods, whereas the nanos in our cata-
log are found at the method, command, expression and field

13http://nedbatchelder.com/code/cog/, Cog by Ned Batchelder.
14http://jinja.pocoo.org/, jinja by Armin Ronacher.
15https://docs.djangoproject.com/en/1.7/topics/templates/, Django Software Foundation.
16http://pyexpander.sourceforge.net/, pyexpander by Goetz Pfeiffer.
17https://code.google.com/p/pypreprocessor/, pypreprocessor by Evan Plaice.
18http://orbeckst.github.io/GromacsWrapper/gromacs/core/fileformats/preprocessor.html, Preprocessor in Python by Evan Plaice

and Oliver Beckstein.
19http://www.cheetahtemplate.org/, Cheetah by Tavis Rudd.
20https://github.com/d-ash/perlpp, PerlPP by Andrew Shubin.

www.astesj.com 1720

Y. Gil et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1711-1726 (2017)

http://nedbatchelder.com/code/cog/
http://jinja.pocoo.org/
https://docs.djangoproject.com/en/1.7/topics/templates/
http://pyexpander.sourceforge.net/
https://code.google.com/p/pypreprocessor/
http://orbeckst.github.io/GromacsWrapper/gromacs/core/fileformats/preprocessor.html
http://www.cheetahtemplate.org/
https://github.com/d-ash/perlpp
http://www.astesj.com

levels [2]. Singer et al.’s nanos are orthogonal. Each nano-
pattern represents a binary property, meaning that it can be
present or not. This property lead to the definition of com-
posite nano-patterns, which are those that are a combination
of fundamental nano-patterns.

Other works on nano-patterns are those of
Batarseh [20], who presents a language formed by 16
method properties and Lee et al. [61], who report 67 at-
tributes of different kind of nanos: method signature, body
and ties of body and behavior.

6.2.1 Other Kinds of Patterns

In the software engineering literature (scientific and not),
there has been a surge of interest regarding the theory and
application of “design patterns”. Such patterns are a spe-
cific arrangement of object oriented components (classes,
methods, inheritance) and represent recurring solutions to
common design problems [62, 63]. Research interest re-
volves, for example, around design patterns automatic de-
tection.

At a lower level of granularity stands the “micro pat-
terns” (or µ-patterns), which are predicated on OO types
(classes). Micro patterns reflect a specific use of OO fea-
tures, such as the absence of methods, inheritance, etc. [57].
Differently from design patterns, the 27 micro patterns in
Gil and Maman’s catalog are prevalent, which means that
they are present in around 75% of all classes, as empirical
studies have shown [57]. Micro patterns are traceable, in
the sense that they can be automatically recognized. In op-
position, design patterns are not traceable [64] and many
attempts have been made to formalize [65–69] and to auto-
matically detect them [70–75].

Design patterns are also purposeful, which means that
they deal with a specific problem. This is not the case of µ-
patterns (they just track the presence of a coding technique),
albeit the prevalence might suggest that a µ-pattern is used
on purpose. The lack of purpose is also a characteristic of
nano-patterns, although for a different reason. Their pur-
pose is related to the small programming task that they carry
out, and can often be learned from their name, but it is usu-
ally unrelated to the system where they occur.

6.2.2 Other Pattern-Like Constructs

A concept similar to nano-patterns is that of idioms, which
are, quoting Allamanis and Sutton, “a syntactic fragment
that recurs frequently across software projects and has a sin-
gle semantic purpose” [76]. The main difference between
idioms and nano-patterns is that the latter are not single
fragments but predicates.

Notably we can find idiom catalogs for different lan-
guages, e.g., [77–80]. Also, IDEs provide support for the
definition and customization of idioms [81, 82]. Some in-
structional/educational material on idioms is found in work
whose aim is to teach idioms as programming tips [83–85].

Sutton et al. investigated the presence of idioms in
generic C++ libraries, finding a high coverage (circa 85%
of classes showing idioms) [86]. In a recent work, Alla-
manis and Sutton applied machine learning techniques to

automatically detect idioms in source code. The discov-
ered idioms included “cross-projects idioms that represent
important program concepts like object creation, exception
handling, etc.” with a prevalence ranging between 3% to
31%, depending on some factors (i.e., the training and test-
ing dataset, the used parameters, etc.) From their work, we
can see that the prevalence of idioms tends be lower than
that of nanos [76].

Another difference between the two constructs is that
nanos are sought, whereas idioms are discovered. Some of
the found idioms show semantic purposes, in the sense that
they are used for object creation, exception handling, and
resource management. In the literature on idioms, other rel-
evant studies are those of Koening [87], Langer [88] and
Willis [89].

6.2.3 Vocabulary vs. Structure

Vocabulary: Some related work deals with code nomen-
clature or the study of the vocabulary that developers use to
describe program elements. Linstead et al. studied source
code vocabulary and discovered the existence of naming
trends related to specific syntactic elements such as classes
and interfaces [90]. Enslen et al. worked on an optimized
algorithm to split identifiers into words’ sequences [91].
Abebe et al. studied the evolution of vocabulary used by
developers along a time line [92]. Newman et al. studied
how to determine and assign lexical categories starting from
source code [93].

Høst and Østvold investigated the implementation of
methods from a corpus of Java applications, to determine
which word is the best for a method naming [94]. In a
subsequent work, they dealt with generation of “a seman-
tics which captures our common interpretation of method
names” [58]. They worked on traceable patterns and pro-
posed a set of traceable attributes that they claim can be
useful building blocks of nano-patterns.

It is worth noting that the authors explicitly claim they
were not proposing nano-patterns. The way vocabulary
matches the structure or not can also lead to “naming bugs”,
a problem that can be mitigated by an automatic proce-
dure. Høst and Østvold proposed automatic tool [95] to sug-
gest proper names. Kashiwabara et al., in different works,
presented techniques to identify candidate verbs for meth-
ods [96, 97]. There were some attempts to use recurring
structure for software engineering purposes. Examples are
works on beacons [98, 99]—stereotypical, recurring seg-
ments of code that are quickly recognized by experienced
developers.

Structure: Some researchers in the area focus their ef-
forts on investigating the recurring elements of the syntac-
tical structure of programs. A concept similar to nano-
patterns is that of stereotype. A stereotype is a syntactical
structure that capture the intent of methods and classes and
can be considered an extension of the micro-nano-pattern
concept [100].

Andras et al. and Moreno et al. compared the outcome
of the run-time with their stereotype [101], to investigate
the consistency between method design and implementa-
tion [101, 102]. Qiu et al. showed that the use of syntacti-

www.astesj.com 1721

Y. Gil et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1711-1726 (2017)

http://www.astesj.com

cal rules in actual programs follows a Zipf-like distribution
(just as happens with words in natural language). In other
words, small sets of syntactic structures tend to govern en-
tire projects [103]. Abd-El-Hafiz et al. classified loops by
complexity levels [104]. Wang et al. introduced an auto-
matic approach to determine high level action through the
analysis of a given loop [105]. Mens et al. proposed to de-
scribe patterns with a declarative meta-programming lan-
guage similar to Prolog.

7 Conclusion
We introduced the concept of pluggable controllers as a way
to facilitate the introduction of new constructors, and ex-
plained how they can be implemented using Lola, the Lan-
guage of Language Amendment, a powerful preprocessor
and macro-language. Lola lets developers augment or even
amend language constructors without affecting the language
architecture.

This argument was illustrated by two cases study: A
stenography for Java nanos and the introduction of Math-
ematica’s commands in Java. Nanos are recurring idioms
devised by developers to perform simple tasks. In a recent
study they revealed to be prevalent in Java, under a given
definition of prevalence. We presented 19 nanos that belong
to a wider catalog [2] and illustrated the implementation of
Java stenography based on them.

Their prevalence make them good candidates to become
pluggable controllers. A stenography for nanos, such that
illustrated in this work for Java—and its subsequent defini-
tion in standard libraries of pluggable controllers, is likely
to improve developers efficiency by reducing coding effort.

In the present paper we reported a peculiar applica-
tion of Lola. However, Lola’s applications are not lim-
ited to the extension of SIC as pluggable controllers. For
example, with Lola it is possible to compute the Halstead
metrics [106], simulate Aspect Oriented Programming, add
syntactic sugar, and many other kinds of language augmen-
tation [15].

Relying on a powerful preprocessing engine, Lola
makes it easy to introduce augmentation. Formal and pre-
cise proofs of semantics are however difficult: Since the se-
mantics of the underlying language is not available to pre-
processors, even the formulation of precise statements on
semantics seems impossible. More so, with Lola which
is language independent, and draws much of its power
from the loose coupling with the underlying semantics and
changes made to it.

7.1 Future Work on Lola

Future works will involve both further improvement of Lola
and research on the application of Lola to help developers’
work.

• Currently, Lola supports trivia (elements such as
space, tabs, etc.), though it is limited to just a few of
them such as ##NewLine and ##EndOfFile, and must
be improved. This type of support may be needed to
process comments, JavaDoc (for Java) and the like.

• Pattern matching features should be improved in or-
der to treat string literals. The introduction of features
that allow the host language to be changed on the fly
would enable application of Lola’s preprocessing to
mixed code (i.e., Java code with an SQL queries as
happens using JDBC, etc.)

• Another promising research avenue emerges if we
ponder the possibility of applying Lola to itself.

• We would like to allow users to define new Lola key-
words from within Lola itself (now only possible with
simple Python classes).

• Some enhancement are required to improve usability.
For example, using single and double # to distinguish
Lola keywords from host language identifiers might
lead to some confusion. We are working on a differ-
ent solution, such as using another character (e.g., @)
instead of #.

7.2 Future Work on Nanos
Further research it is needed to improve the prevalence val-
ues of nano-patterns by specifically looking for new candi-
dates in other corpora. In this work, we used a lightweight
nano tracer to track the nanos in source code. Additional
work it is needed to improve search possibilities in several
aspects (i.e., improving the namespace analysis, etc.). The
subjective and sample bias in the harvest may have led us to
miss some patterns. Further efforts are needed to verify this
suspicion and to extend the basic catalog.

Conflict of Interest The authors declare no conflict of in-
terest.

Acknowledgment The authors thank the anonymous re-
viewers for their valuable suggestions. Inspiring discus-
sions with Tomer Levy are gratefully and intentionally ac-
knowledged. This research was supported by THE ISRAEL
SCIENCE FOUNDATION (grant No. 1803/13 *).

References
[1] Yossi Gil, Ori Marcovitch, and Matteo Orrù. Pluggable

controllers and nano-patterns. In Martin Pinzger, Gabriele
Bavota, and Andrian Marcus, editors, IEEE 24th Inter-
national Conference on Software Analysis, Evolution and
Reengineering, SANER 2017, Klagenfurt, Austria, Febru-
ary 20-24, 2017, pages 447–451. IEEE Computer Society,
2017.

[2] Yossi Gil, Ori Marcovitch, and Matteo Orrù. A Nano-
Patterns Language for Java. Draft available at https://-
goo.gl/tSte12, 2017.

[3] David A. Watt. Programming Language Design Concepts.
John Wiley & Sons, 2004.

[4] Raphael A. Finkel. Advanced Programming Language
Design. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995.

[5] Ravi Sethi. Programming Languages: Concepts and Con-
structs. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1989.

www.astesj.com 1722

Y. Gil et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1711-1726 (2017)

http://www.astesj.com

[6] Donald E. Knuth. Structured programming with Go to
statements. ACM Comput. Surv., 6(4):261–301, December
1974. ACM, New York, NY, USA.

[7] H.D. Mills. Mathematical foundations for structured pro-
gramming. Technical report, IBM rep. FSC 72-6012, IBM
Fed. Syst. Div., Gaithersburg, Md., 1972.

[8] Niklaus Wirth. On the composition of well-structured
programs. ACM Comput. Surv., 6(4):247–259, December
1974. ACM,New York City, NY, USA.

[9] J. R. Donaldson. Structured programming. In Edward Nash
Yourdon, editor, Classics in Software Engineering, pages
179–185. Yourdon Press, Upper Saddle River, NJ, USA,
1979.

[10] Corrado Böhm and Giuseppe Jacopini. Flow diagrams, tur-
ing machines and languages with only two formation rules.
Commun. ACM, 9(5):366–371, may 1966. ACM,New York
City, NY, USA.

[11] Bertrand Meyer. EIFFEL the Language. Object-Oriented
Series. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1992.

[12] Walter Cazzola and Edoardo Vacchi. Language compo-
nents for modular DSLs using traits. Computer Languages,
Systems & Structures, 45:16–34, apr 2016. Springer Pub-
lishing, New York City, NY, USA.

[13] Nathanael Schrli, Stéphane Ducasse, and Oscar Nierstrasz.
Traits: Composable units of behavior. In (ECOOP’03), vol-
ume 2743, pages 248–274, 2003-07.

[14] Leonardo V.S. Reis, Vladimir O. Di Iorio, and Roberto S.
Bigonha. An on-the-fly grammar modification mecha-
nism for composing and defining extensible languages.
Computer Languages, Systems & Structures, 42:46–59, jul
2015. Springer Publishing, New York City, NY, USA.

[15] Iddo E. Zmiry. Lola: a Programming Language for
Augmenting Programming Languages. Master’s the-
sis, Technion—Israel Institute of Technology, 2016.
url: https://drive.google.com/file/d/0B3645jTHku6WZ-
zVkMl9uVGlTQ2M/view.

[16] Dennis M. Ritchie. The evolution of the UNIX time-sharing
system. In Language Design and Programming Methodol-
ogy, pages 25–35. Springer, 1980.

[17] David Garlan and Mary Shaw. An introduction to software
architecture. Technical report, Carnegie Mellon University,
Pittsburgh, PA, USA, 1994.

[18] Joseph (Yossi) Gil and Itay Maman. Micro patterns in
java code. In Proceedings of the 20th Annual ACM SIG-
PLAN Conference on Object-oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA ’05, pages
97–116, New York, NY, USA, 2005. ACM.

[19] Jeremy Singer, Gavin Brown, Mikel Luján, Adam Pocock,
and Paraskevas Yiapanis. Fundamental nano-patterns to
characterize and classify java methods. Elect. Notes Theor.
Comp. Sci., 253(7):191–204, September 2010. Springer
Publishing, New York City, NY, USA.

[20] Feras Batarseh. Java nano patterns: A set of reusable ob-
jects. In Proceedings of the 48th Annual Southeast Regional
Conference, ACM SE ’10, pages 60:1–60:4, New York, NY,
USA, 2010. ACM.

[21] J. E. Hirsch. An index to quantify an individual’s scientific
research output. Proc. National Academy of Sciences of the
USA of America, 102(46):16569–16572, 2005. National
Academy of Sciences.

[22] Leo Egghe and Ronald Rousseau. An infometric model
for the Hirsch-index. Scientometrics, 69(1):121–129, 2006.
Springer Publishing, New York City, NY, USA.

[23] Tal Cohen and Joseph Gil. Self-calibration of metrics of
Java methods. In TOOLS Pacific’00: 37th Int. Conf. Tech.
OO Lang. & Syst., pages 94–107, Washington, DC, 2000.
IEEE. IEEE,Washington, DC, USA.

[24] G. Concas, M. Marchesi, S. Pinna, and N. Serra. Power-
laws in a large oo soft. syst. IEEE, 33(10):687–708, Octo-
ber 2007.

[25] G. Concas, M. Marchesi, A. Murgia, R. Tonelli, and
I. Turnu. On the distribution of bugs in the eclipse syst.
IEEE, 37(6):872–877, November 2011.

[26] I. Turnu, G. Concas, M. Marchesi, S. Pinna, and R. Tonelli.
A modified yule process to model the evolution of some OO
system properties. Inf. Sc., 181(4):883–902, 2011. Springer
Publishing, New York City, NY, USA.

[27] S. Alonso, F.J. Cabrerizo, E. Herrera-Viedma, and F. Her-
rera. h-index: A review focused in its variants, computation
and standardization for different scientific fields. Journal of
Informetrics, 3(4):273 – 289, 2009.

[28] Miltiadis Allamanis and Charles A. Sutton. Mining source
code repositories at massive scale using language model-
ing. In Thomas Zimmermann, Massimiliano Di Penta, and
Sunghun Kim, editors, Proc. the 10th Working Conf. Min-
ing Soft. Repositories, MSR ’13, San Francisco, CA, USA,
May 18-19, 2013, pages 207–216, NY/USA, 2013. IEEE.

[29] Joseph (Yossi) Gil and Gal Lalouche. When do soft.
complexity metrics mean nothing?—when examined out of
context. J. Object Tech., 15(1):2:1–25, 2016.

[30] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and
Klaus Ostermann. Sugarj: Library-based syntactic lan-
guage extensibility. SIGPLAN Not., 46(10):391–406, oct
2011. ACM, New York, NY, USA.

[31] Matthew Flatt. Creating languages in Racket. Communica-
tions of the ACM, 55(1):48–56, January 2012. ACM,New
York City, NY, USA.

[32] Daniel de Rauglaudre. Camlp4–reference manual.
http://caml.inria.fr/pub/docs/manual-camlp4/
index.html, 2003. Accessed: 2016-08-26.

[33] Tomaž Kosar, Pablo E. Martı́nez López, Pablo A. Barrien-
tos, and Marjan Mernik. A preliminary study on various
implementation approaches of domain-specific language.
Information and Software Technology, 50(5):390–405, apr
2008.

[34] A. Naumchev and B. Meyer. Seamless requirements. Com-
puter Languages, Systems & Structures, 49:119 – 132,
2017. Springer Publishing, New York City, NY, USA.

[35] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rek-
ers. The syntax definition formalism sdf—reference
manual—. SIGPLAN Not., 24(11):43–75, November
1989.

[36] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas,
and Eelco Visser. Stratego/xt 0.17. a language and toolset
for program transformation. Science of Computer Program-
ming, 72(1):52 – 70, 2008. Special Issue on Second issue
of experimental software and toolkits (EST).

[37] PYPL PopularitY of Programming Language. http://
pypl.github.io/PYPL.html. Accessed: 2017-07-31.

[38] TIOBE Index for July 2017. https://www.tiobe.com/
tiobe-index/. Accessed: 2017-07-31.

www.astesj.com 1723

Y. Gil et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1711-1726 (2017)

http://caml.inria.fr/pub/docs/manual-camlp4/index.html
http://caml.inria.fr/pub/docs/manual-camlp4/index.html
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
http://www.astesj.com

[39] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.
Java(TM) Language Specification, The (3rd Edition) (Java
(Addison-Wesley)). Addison-Wesley Professional, 2005.

[40] James Gosling, Bill Joy, Guy L. Steele, Jr., Gilad Bracha,
and Alex Buckley. The Java Language Specification, Java
SE 7 Edition. Addison-Wesley Professional, 1st edition,
2013.

[41] Robert Dyer, Hridesh Rajan, Hoan Anh Nguyen, and
Tien N. Nguyen. Mining billions of ast nodes to study ac-
tual and potential usage of java language features. In Pro-
ceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pages 779–790, New York, NY,
USA, 2014. ACM.

[42] Dong Qiu, Bixin Li, Earl T. Barr, and Zhendong Su. Under-
standing the syntactic rule usage in java. Journal of Systems
and Software, 123:160 – 172, 2017.

[43] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML
4.01 specification. W3C Recommendation, W3C - World
Wide Web Consortium, December 1999.

[44] George Reilly Brian Francis and Dino Esposito. Profes-
sional Active Server Pages 3.0. Wrox Press, 1999-09.

[45] Hans Bergsten. JavaServer Pages. O’Reilly Media, 3rd
edition, 2003-12.

[46] Vassilios Karakoidas, Dimitris Mitropoulos, Panagiotis
Louridas, and Diomidis Spinellis. A type-safe embedding
of SQL into Java using the extensible compiler framework
J%. Computer Languages, Systems & Structures, 41:1–20,
apr 2015. Elsevier Science Publishers, Amsterdam, The
Netherlands.

[47] GNU. C preprocessor. https://gcc.gnu.org/
onlinedocs/cpp/.

[48] Dennis Ritchie. he Development of the C Language.
In John A. N. Lee and Jean E. Sammet, editors, HOPL
Preprints, pages 201–208. ACM, 1993.

[49] A. Snyder. A portable compiler for the language C. Tech-
nical report, Massachusetts Institute of Technology, Cam-
bridge, MA, USA, 1975.

[50] GNU. The C preprocessor – overview. https://gcc.gnu.
org/onlinedocs/cpp/Overview.html#Overview.

[51] GNU. M4 manual. http://www.gnu.org/software/m4/
manual/m4.html.

[52] GNU. M4 manual – history section. https://www.gnu.
org/software/m4/manual/m4.html#History.

[53] A. Dain Samples. User’s Guide to the M5 Macro Lan-
guage. Number UCB/CSD-91-621 in Report // Computer
Science Division (EECS), UCB/CSD. University of Cali-
fornia, Berkeley, Computer Science Division, 2nd edition,
1991.

[54] Robert F Tobler. Pym-a macro preprocessor based on
python. In Proceedings of the 9th International Python
Conference, Long Beach, California, 2001.

[55] Eugene Kohlbecker, Daniel P Friedman, Matthias
Felleisen, and Bruce Duba. Hygienic macro expansion.
In Proceedings of the 1986 ACM conference on Lisp and
functional programming, pages 151–161, 1986. ACM,
New York, NY, USA.

[56] Byeongcheol Lee, Robert Grimm, Martin Hirzel, and
Kathryn S McKinley. Marco: Safe, expressive macros for
any language. In ECOOP 2012–Object-Oriented Program-
ming, pages 589–613. Springer, 2012.

[57] Joseph (Yossi) Gil and Itay Maman. Micro patterns in Java
code. In Ralph Johnson and Richard P. Gabriel, editors,
Proc. the 20th Annual OO Prog., Syst., Lang., and App.,
OOPSLA 2005, volume 40, pages 97–116, NY/USA, Octo-
ber 2005. ACM.

[58] Einar W. Høst and Bjarte M. Østvold. The java prog.’s
phrase book. In Dragan Gasevic, Ralf Lämmel, and
Eric Van Wyk, editors, Soft. Language Eng., First Int.
Conf., SLE 2008, Toulouse, France, Sep 29-30, 2008. Re-
vised Selected Papers, volume 5452 of Lecture Notes in
Comp. Science, pages 322–341, NY/USA, 2008. Springer.

[59] A.K. Deo and B.J. Williams. Preliminary study on as-
sessing software defects using nano-pattern detection. In
24th International Conference on Software Engineering
and Data Engineering, SEDE 2015, 2015.

[60] K. Z. Sultana, A. Deo, and B. J. Williams. A prelimi-
nary study examining relationships between nano-patterns
and software security vulnerabilities. In 2016 IEEE
40th Annual Computer Software and Applications Confer-
ence (COMPSAC), volume 1, pages 257–262, June 2016.
IEEE,Washington, DC, USA.

[61] Illo Lee, Suntae Kim, Sooyong Park, and Younghwa
Cho. Attributes for Characterizing Java Methods, pages
185–191. Springer, Berlin, Heidelberg, 2016.

[62] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Professional Computing series.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1995.

[63] Erich Gamma. Going beyond objects with design patterns.
In ECOOP’97—OO Prog.: 11th European Conf. Jyväskylä,
Finland, Jun 9–13, 1997 Proc., pages 530–530, Berlin, Hei-
delberg, 1997. Springer.

[64] Peter Van Emde Boas. Resistance is Futile; formal linguis-
tic observations on design patterns. techreport ILLC-CT-
1997-03, The Institute For Logic, Language, and Computa-
tion (ILLC), University of Amsterdam, 1997-02.

[65] Amnon H. Eden, Joseph (Yossi) Gil, Yoram Hirshfeld, and
Amiram Yehudai. Motifs in object oriented architecture,
1999.

[66] Amnon H. Eden, Joseph (Yossi) Gil, and Amiram Yehu-
dai. A formal language for design patterns. In (PLoP’96),
1996-09.

[67] Amnon H. Eden. Formal specification of object-oriented
design. In Int. Conf. on Multidisciplinary Design in Engi-
neering (CSME-MDE’01), pages 21–22, 2001-11.

[68] Amnon H. Eden. A visual formalism for object-oriented
architecture. In (IDPT’02), 2002-06.

[69] Amnon H. Eden. Giving “the quality” a name - pre-
cise specification of design patterns - a second look at the
manuscripts. Journal of Object-Oriented Programming,
11(3), 1998-06.

[70] Rudolf Ferenc, Árpád Beszédes, Lajos Jeno Fülöp, and
Janos Lele. Design pattern mining enhanced by machine
learning. In 21st ”IEEE” 2005), 25-30 Sep 2005, Budapest,
Hungary, pages 295–304, NY/USA, 2005. IEEE.

[71] Yann-Gaël Guéhéneuc, Jean-Yves Guyomarc’h, and
Houari Sahraoui. Improving design-pattern identification:
a new approach & an exploratory study. Soft. Quality J.,
18(1):145–174, 2010. Kluwer Academic Publishers, Hing-
ham, MA, USA.

www.astesj.com 1724

Y. Gil et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1711-1726 (2017)

https://gcc.gnu.org/onlinedocs/cpp/
https://gcc.gnu.org/onlinedocs/cpp/
https://gcc.gnu.org/onlinedocs/cpp/Overview.html#Overview
https://gcc.gnu.org/onlinedocs/cpp/Overview.html#Overview
http://www.gnu.org/software/m4/manual/m4.html
http://www.gnu.org/software/m4/manual/m4.html
https://www.gnu.org/software/m4/manual/m4.html#History
https://www.gnu.org/software/m4/manual/m4.html#History
http://www.astesj.com

[72] Marco Zanoni, Francesca Arcelli Fontana, and Fabio Stella.
On applying machine learning techniques for design pattern
detection. J. Syst. and Soft., 103:102–117, 2015. Springer
Publishing, New York City, NY, USA.

[73] Yann-Gaël Guéhéneuc, Houari A. Sahraoui, and Farouk
Zaidi. Fingerprinting design patterns. In 11th Working
Conf. Rev. Eng., WCRE 2004, Delft, The Netherlands, Nov
8-12, 2004, pages 172–181, NY/USA, 2004. IEEE.

[74] Marek Vokác. An efficient tool for recovering design
patterns from c++ code. Journal of Object Technology,
5(1):139–157, 2006.

[75] Linzhang Wang, Zhixiong Han, Jiantao He, Hanfei Wang,
and Xuandong Li. Recovering design patterns to support
program comprehension. In Proceedings of the 2Nd Inter-
national Workshop on Evidential Assessment of Software
Technologies, EAST ’12, pages 49–54, New York, NY,
USA, 2012. ACM.

[76] Miltiadis Allamanis and Charles A. Sutton. Mining id-
ioms from source code. In Shing-Chi Cheung, Alessandro
Orso, and Margaret-Anne D. Storey, editors, Proc. the 22nd
“ACM” Found. Soft. Eng., (FSE-22), pages 472–483, Hong
Kong, November 2014. ACM.

[77] Wikibooks. More C++ Idioms, 2017. https://en.wiki-
books.org/wiki/More C%2B%2B Idioms.

[78] Java Idioms Editor. Java Idioms, 2017. http://c2.com/p-
pr/wiki/JavaIdioms/JavaIdioms.html.

[79] S. Chuan. JavaScript Patterns Collection, 2014.
http://shichuan.github.io/javascript-patterns/.

[80] R. Waldron. Principles of writing consistent, id-
iomatic JavaScript, 2014. https://github.com/rwaldron/id-
iomatic.js/.

[81] E. Recommenders-Contributors. Eclipse SnipMatch, 2014.

[82] JetBrains. High-speed coding with Custom Live Tem-
plates., 2014. http://bit.ly/1o8R8Do.

[83] Nathan Gurewich and Ori Gurewich. Java Manual of Style.
Ziff-Davis Publishing Co., April 1996.

[84] Chris Laffra. Advanced Java: Idioms, Pitfalls, Styles &
Prog. Tips. Prentice Hall Ptr, September 1996.

[85] Craig Larman and Rhett Guthrie. Java 2 Performance &
Idiom Guide. Prentice Hall Ptr, NJ/USA, 1999.

[86] A. Sutton, R. Holeman, and J. I. Maletic. Identification of
idiom usage in c++ generic libraries. In 2010 IEEE 18th
Int. Conf. Program Comprehension, pages 160–169, New
York,NY, June 2010. IEEE.

[87] Andrew Koenig. Idiomatic design. Comm. ACM, pages
14–19, 1995. ACM, New York, NY, USA.

[88] A. Langer. Java programming idioms. In Proc. OO Lang.&
Syst.. TOOLS 38, pages 197–198, 2001. IEEE,Washington,
DC, USA.

[89] L. M. Wills. Automated program recognition: A feasibility
demonstration. Artif. Intell., 45(1-2):113–171, September
1990. Elsevier Science Publishers Ltd. Essex, UK.

[90] Erik Linstead, Lindsey Hughes, Cristina Lopes, and Pierre
Baldi. Exploring Java software vocabulary: A search &
mining perspective. In Proc. Int. Conf. Soft. Eng., pages
29–32, 2009. IEEE,Washington, DC, USA.

[91] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker. Min-
ing source code to automatically split identifiers for soft-
ware analysis. In 2009 6th IEEE International Working
Conference on Mining Software Repositories, pages 71–80,
Washington, DC, USA, May 2009. IEEE.

[92] S. L. Abebe, S. Haiduc, A. Marcus, P. Tonella, and G. An-
toniol. Analyzing the evolution of the source code vocabu-
lary. In 2009 13th European Conference on Software Main-
tenance and Reengineering, pages 189–198, Washington,
DC, USA, March 2009. IEEE.

[93] C. D. Newman, R. S. AlSuhaibani, M. L. Collard, and
J. I. Maletic. Lexical categories for source code iden-
tifiers. In 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER),
pages 228–239, Feb 2017. IEEE,Washington, DC, USA.

[94] E. W. Host and B. M. Ostvold. The programmer’s lexicon,
volume i: The verbs. In Seventh IEEE International Work-
ing Conference on Source Code Analysis and Manipulation
(SCAM 2007), pages 193–202, Sept 2007. IEEE, Washing-
ton, DC, USA.

[95] Einar W. Høst and Bjarte M. Østvold. Debugging method
names. In Proceedings of the 23rd European Conference
on ECOOP 2009 — Object-Oriented Programming, Genoa,
pages 294–317, Berlin, Heidelberg, 2009. Springer-Verlag.

[96] Y. Kashiwabara, Y. Onizuka, T. Ishio, Y. Hayase, T. Ya-
mamoto, and K. Inoue. Recommending verbs for rename
method using association rule mining. In 2014 Software
Evolution Week - IEEE Conference on Software Mainte-
nance, Reengineering, and Reverse Engineering (CSMR-
WCRE), pages 323–327, Feb 2014. IEEE,Washington, DC,
USA.

[97] Yuki Kashiwabara, Takashi Ishio, Hideaki Hata, and Kat-
suro Inoue. Method verb recommendation using associa-
tion rule mining in a set of existing projects. IEICE Trans-
actions on Information and Systems, E98.D(3):627–636,
2015.

[98] Ruven Brooks. Towards a theory of the comprehen-
sion of computer programs. Int. J. Man-Machine Studies,
18(6):543–554, 1983. Elsevier Science Publishers, Ams-
terdam, The Netherlands.

[99] Martha E. Crosby, Jean Scholtz, and Susan Wiedenbeck.
The roles beacons play in comprehension for novice & ex-
pert programmers. In J. Kuljis, L. Baldwin, and R. Scoble,
editors, Proc. 14th Ann. Workshop of the Psychology of
Programmers Interest Group (PPIG), pages 58–73, 2002.

[100] N. Dragan, M. L. Collard, and J. I. Maletic. Reverse engi-
neering method stereotypes. In 2006 22nd IEEE Interna-
tional Conference on Software Maintenance, pages 24–34,
Washington, DC, USA, Sept 2006. IEEE.

[101] P. Andras, A. Pakhira, L. Moreno, and A. Marcus. A mea-
sure to assess the behavior of method stereotypes in OO
software. In 2013 4th International Workshop on Emerging
Trends in Software Metrics (WETSoM), pages 7–13, Wash-
ington, DC, USA, May 2013. IEEE.

[102] L. Moreno and A. Marcus. Jstereocode: automatically iden-
tifying method and class stereotypes in java code. In 2012
Proceedings of the 27th IEEE/ACM International Confer-
ence on Automated Software Engineering, pages 358–361,
New York, NY, Sept 2012. IEEE.

[103] Dong Qiu, Bixin Li, Earl T. Barr, and Zhendong Su. Under-
standing the syntactic rule usage in Java. J. Syst. and Soft.,
123:160–172, 2017. Springer Publishing, New York City,
NY, USA.

[104] S. K. Abd-El-Hafiz and V. R. Basili. A knowledge-based
approach to the analysis of loops. IEEE, 22(5):339–360,
May 1996.

www.astesj.com 1725

Y. Gil et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1711-1726 (2017)

http://www.astesj.com

[105] X. Wang, L. Pollock, and K. Vijay-Shanker. Developing a
model of loop actions by mining loop characteristics from a
large code corpus. In 2015 IEEE 31st Int. Conf. Soft. Maint.
& Evolution, ICSME 2015 - Proc., 2015. IEEE,Washing-

ton, DC, USA.

[106] Maurice H. Halstead. Elements of Software Science. Op-
erating and Programming Systems. Elsevier Science Inc.,
New York, NY, USA, 1977.

www.astesj.com 1726

Y. Gil et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1711-1726 (2017)

http://www.astesj.com

	Introduction
	Control Constructors
	A Modular, Plugin-Oriented Approach
	Lola
	Nano-Patterns
	Contribution

	Background
	Pluggable Controllers
	Nano-Patterns

	Lola
	Case Studies
	Stenography for Java Nano-Patterns
	The notNullRequired Nano
	The forEach Nano

	Mathematica's Commands in Java
	Loops: the Do Command

	Discussion
	Related Work
	Lola
	Embedded languages
	Preprocessors
	Macro Languages

	Nano-Patterns
	Other Kinds of Patterns
	Other Pattern-Like Constructs
	Vocabulary vs. Structure

	Conclusion
	Future Work on Lola
	Future Work on Nanos

